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ABSTRACT: Conformer generation is crucial for computational chemistry tasks such as structure-based modeling and property

prediction. Although reliable methods exist for organic molecules, coordination complexes remain challenging due to their diverse
coordination geometries, ligand types, and stereochemistry. Current tools often lack the flexibility and reliability required for these

systems. Here, we introduce MetalloGen, a novel algorithm designed for the automated generation of 3D conformers of

mononuclear coordination complexes. MetalloGen accepts either SMILES strings or molecular graph representations as input and
enables the generation of reliable conformers, including those with multiple polyhapto ligands, which are typically inaccessible to
conventional conformer generators. To rigorously assess MetalloGen’s performance, we benchmarked it on three distinct data sets: a
curated collection of experimentally determined structures from the Cambridge Structural Database, the MOR41 benchmark set
encompassing a wide range of organometallic reactions and complex ligand environments, and three catalytic reactions. Across all
test sets, MetalloGen consistently reproduced appropriate geometries with high fidelity and demonstrated robust stereochemical
control, even for challenging cases involving multiple polyhapto ligands. The versatility and reliability of MetalloGen make it a
valuable tool for more accurate and efficient computational investigations in inorganic and organometallic chemistry.

1. INTRODUCTION For typical organic molecules, the generation of conformers

The generation of 3D molecular conformers is a key step in
many computational chemistry workflows."” Given a molec-
ular graph, conformers are typically constructed using methods

36
is well established. In particular, DG methods such as 37
ETKDG,”*’ combined with force field optimizations, enable 33

the production of accurate conformers. This approach is widely 39

. . 24,41 .
such as distance geometry (DG),” rule-based approaches like gissei’vlen flze—lilss I;uch 2 dr?lg( dlscov.ery | alnd matzljlals I

4 ) ] ry. owever, unlike organic molecules, coordina- 41
OME_Cg\f or more recently, machine learmng-base:d meth- tion complexes pose significant challenges for generating 3D 42
ods. These initial structures are then refined using force conformers due to their structural diversity and complex- 43
fields (FF), including the Universal Force Field,"> Merck ity.**™>7 These complexes can have a wide range of metal 44
Molecular Force Field,'"”'® and GFN-FE.'® For greater centers spanning the s-, p-, d-, and f-blocks. Moreover, 4s

accuracy, semiempirical methods such as PM6'~ and GFN-
xTB'*™° or more sophisticated density functional theory
(DFT) approaches can be employed. The resulting optimized
geometries serve as the foundation for computing molecular
and electronic properties, including dipole moments, atomic
partial charges, orbital energies, and thermochemical functions.
These properties can be used for various applications such as
quantitative structure—activity relationship modeling,”' =’
virtual screening,24’25 machine learning database construc-
tion,?* ™3 reaction mechanism study,zz’33_39 etc. Therefore, a
reliable 3D conformer generation method is a must in
computational chemistry workflows.
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structural diversity is further increased by the various metal— 46
ligand binding modes, including chelation and hapticity. This 47
complexity is compounded by the variability of stereoisomers 48
that can arise within a given coordination environment. As a 49
result, conformer generation strategies developed for organic so
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Figure 1. Overview of the MetalloGen algorithm. (a) MetalloGen begins with a modified SMILES (m-SMILES) representation that encodes the
metal center (highlighted in yellow), ligands (highlighted in various colors), and overall coordination geometry (trigonal bipyramidal). Each donor
atom is labeled with an atom mapping number, enclosed in brackets. This number, placed after a colon (e.g, [C1-:21), indicates the
coordination site within the coordination geometry. (b) From this input, a molecular graph is constructed that includes stereochemistry.
Alternatively, this graph can be provided directly by the user. (c) Dummy atoms are added at each polyhapto coordination site to facilitate the
handling of polyhapto ligands. (d) A rough 3D structure with the correct stereochemistry is generated using a constrained embedding algorithm.
(e) In the final step, dummy atoms are removed, and the structure is refined using force field (FF) or quantum chemistry (QC) methods.

s1 molecules are not directly applicable to coordination
52 complexes.

53 To address this challenge, several 3D conformer generation
s4 tools for coordination complexes have been developed over the
ss past decade.’*™® One of the earliest tools is MolSimplify,
s developed by the Kulik group.”® This method uses rigid body
s7 manipulations and force field optimizations to position and
sg orient mono- and bidentate ligands around a metal center.
s9 Later, the Reiher group introduced Molassembler,”® which
60 offers a generalized framework for constructing molecular
61 graphs to enable the detailed classification of coordination
62 geometries and stereochemistry, as well as the generation of
63 conformers. More recent works include Architector,’” which,
64 for the first time, builds on earlier works to generate
6s conformers of f-block organometallic complexes, and the
66 MACE program,®’ developed to generate all possible stereo-
67 chemical configurations of octahedral and square planar
68 complexes. In the latest developments, machine learning—
69 based methods, particularly diffusion-based generative models,
70 have been explored for structure generation in coordination
71 complexes as alternatives to algorithm-based approaches.**~"°
720 The aforementioned methods have been widely used to
73 explore the broad chemical space of transition metal complex
74 c31t21lysts,7l_76 metal—organic frameworks,””””® molecular
75 magnetic materials,””~** and other related systems.””* ™"’
76 Several recent reviews provide comprehensive overviews of
77 advances in conformer generation for coordination complexes
78 and their applications.”"’**%%’

79 Despite such significant advancements, existing tools still
80 face limitations in the automated generation of 3D conformers
81 for certain classes of coordination complexes, many of which
82 play key roles in coordination chemistry. For example,
83 MolSimplify is not automated for systems containing high-

denticity or polyhapto ligands, as it treats ligands as rigid s4
entities. In such cases, ligands must be manually prepared as ss
predefined geometries—referred to as “custom cores”—to 86
enable conformer generation. While Architector can generate s7
3D conformers of complexes with high-denticity ligands ss
without manual intervention through the DG method, it so
does not support side-on bound ligands, such as 7>-ethylene in 90
Zeise’s salt, and polydentate haptic ligands with donor atoms o1
that do not participate in haptic bonding. Such ligands are 92
especially common in organometallic catalysis, including olefin 93
polymerization, hydrogenation, cross-coupling, and the activa- 94
tion of molecules from dihydrogen to alkanes.”*”°~ Similarly, 95
MACE cannot handle ligands with # interactions and is limited 96
to square planar and octahedral geometries, despite offering 97
unique features such as the systematic enumeration of all 98
feasible stereoisomers. Diffusion-based generative models also 99
do not address these limitations, as these studies have focused 100
on the generative design of novel coordination complexes 101
rather than targeted generation of conformers from a given 102
molecular graph. 103

In this work, we present a new conformer generation tool 104
called MetalloGen for diverse coordination complexes, to 10s
address the aforementioned limitations. Inspired by Architec-
tor and MACE, MetalloGen employs the DG method with 107
slight modifications to support side-on bound and polyhapto 108
ligands while enabling precise control over stereochemical 109
configurations. Additionally, it supports conformer generation 110
directly from a SMILES-like representation that encodes the 111
molecular graph and coordination environment, enabling 112
seamless integration with many computational workflows. As 113
a result, MetalloGen can generate conformers across a broad 114
range of coordination geometries and ligand types—including 115
both polydentate and polyhapto ligands—that are commonly 116
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117 encountered in organometallic chemistry and can be readily through four key steps to generate a reliable 3D conformer: 178
118 used for related applications. molecular graph construction, dummy atom addition, 3D 179
119 To rigorously evaluate MetalloGen’s performance, we embedding, and structural refinement. 180
120 benchmarked the algorithm against a curated subset of In the first step, a molecular graph is constructed from the 1s1
121 experimentally characterized structures from the Cambridge given m-SMILES, encoding both atomic connectivity and 1s2
122 Structural Database (CSD). These benchmarks demonstrate stereochemical details (Figure 1b). This graph is built by 1s3
123 that MetalloGen reliably generates 3D conformers across connecting all donor atoms in each ligand and the metal atom. 184
124 diverse coordination environments, highlighting its suitability In Figure 1b, edges are added between each carbon atom of 1ss
125 for high-throughput computational screening of metal- the Cp rings and the zirconium center, resulting in a formal 186
126 containing compounds, regardless of the application domain valence of 13 for the metal. If this connectivity information is 187
127 or specific use case. already provided, MetalloGen can bypass this step and directly 188
128 We further assessed MetalloGen using the MOR41 bench- proceed to 3D conformer generation using the given 189

129 mark, which comprises 41 diverse organometallic reactions
130 originally curated by expert computational chemists to evaluate

13 I?FT methods.”” This set includes many side.—on b01.1nd direct 3D embedding of such a high-valence molecular graph 192
132 ligands, such as ethylene and cyclohexene, along with a variety often fails when handling it with standard cheminformatics 193

133 of coordination geometries. Accurate conformer generation for tools (e.g, RDKit). One possible reason for this is the high 194
134 these complexes requires precise control of stereochemistry.

135 Despite this challenge, MetalloGen successfully reproduced all
136 64 mononuclear organometallic complexes involved in the
137 MOR41 set.

138 Finally, we applied MetalloGen to three catalytic systems to
139 evaluate its ability to automatically compute reaction energies
140 for elementary steps in each catalytic cycle. In all cases, we
141 found that the resulting energy profiles closely matched the
142 corresponding reference data.

143 In what follows, we first describe the overall workflow of
144 MetalloGen. Next, we present a detailed evaluation of its
145 performance across the introduced three test sets. Finally, we
146 conclude with a discussion of our findings and future directions
147 for further development.

connectivity. 190
While this graph can be chemically intuitive, we found that 191

ht
—_

coordination number of the metal (e.g,, 13 for Zr in Figure 195
1b), which exceeds the typical valency encountered in organic 196
molecules, usually no more than six. To mitigate this issue, 197
MetalloGen introduces dummy atoms at each polyhapto 198
coordination site (Figure 1c). Each Cp ring is now connected 199
to a dummy sulfur atom, which in turn coordinates with the 200
metal center. This effectively reduces the bond count of the 201
zirconium atom from 13 to 5, significantly facilitating the 202
embedding process. This dummy-atom insertion is a key step 203
in our algorithm, allowing reliable 3D embedding of complexes 204
with haptic ligands—regardless of their denticity—while 205
preserving the intended coordination geometry (e.g., trigonal 206
bipyramidal). From this modified graph, MetalloGen proceeds 207
to the 3D embedding step. It employs RDKit’s built-in 208
2. METHODS constrained embedding algorithm, which is based on the DG 209
method, to construct an initial 3D structure (Figure 1d). To 210
enforce correct stereochemistry, MetalloGen applies positional 211
constraints derived from predefined coordination templates. 212
These templates consist of sets of normalized direction vectors 213
corresponding to each coordination site, guiding the spatial 214
arrangement of donor atoms directly bonded to the metal 215
center (highlighted in yellow in Figure 1lc). In total, 30 216
templates are implemented, adapted from the Architector 217
toolkit, covering a wide range of coordination environments. 218

In the final step, the generated structure undergoes structural 219
refinement to restore target metal—ligand distances and 220
optimize ligand geometries (Figure le). This step refines 221
distance inaccuracies caused by dummy atoms and other 222
distortions that can incur during embedding. The refinement is 223
carried out using constrained scan optimization, in which 224
geometric constraints are applied to the ligand atoms 225

[

N

148 Figure 1 illustrates a simplified workflow of our algorithm using
149 a trigonal bipyramidal pyridine-bridged zirconocene dichloride
150 compound as an example. We devised a modified SMILES
151 representation for mononuclear coordination complexes, called
152 m-SMILES, which serves as input for MetalloGen to generate
153 the corresponding 3D conformers (Figure la). This
154 representation differs from the SMILES-based format recently
155 developed by Rasmussen et al,”® which was designed to be
156 directly parsable by RDKit, enabling seamless integration with
157 cheminformatics tools. Specifically, m-SMILES encodes the
158 metal center (e.g, [Zr+4], highlighted in yellow), the
159 SMILES strings of individual ligands, and the overall
160 coordination geometry (e.g, 5 trigonal bipyrami-
161 dal). Ligands are separated by vertical bars, and their donor
162 atoms directly coordinated to the metal are indicated by square
163 brackets. Coordination sites are assigned using atom mapping

-

—_

164 numbers; for example, [C1-:2] indicates that a chloro coordinated to the metal center. The procedure begins with 226
165 ligand is placed at coordination site 2 (highlighted in light an FF method, and if the FF-based optimization fails to 227
166 green), and [C-:4]2[CH:4]=[CH:4][CH:4] produce a chemically reasonable structure, a quantum chemical 228
167 =[CH:4]2 specifies that the five carbon atoms of a (QC) method is applied. In MetalloGen, GFN2-xTB is used as 229
168 cyclopentadienyl (Cp) ring are bonded to the metal center the default QC method, offering a good balance between 230
169 at coordination site 4 (highlighted in purple-blue). While this computational efficiency and chemical accuracy. As a result, 231
170 format is not directly RDKit-compatible, it offers a more MetalloGen produces chemically valid 3D conformers 232
171 expressive and flexible syntax that facilitates intuitive corresponding to the input m-SMILES representation, even 233
172 specification of coordination geometry and metal-centered for a complex that includes a multidentate haptic ligand. 234
173 stereochemistry. In particular, it enables straightforward However, the resulting conformers are only partially optimized 235
174 encoding of structurally complex ligands, such as polydentate due to the imposed geometric constraints. Therefore, we note 236
175 and polyhapto systems like the pyridine-bridged bis- that they should be further relaxed at the desired level of 237
176 (cyclopentadienyl) ligand illustrated in Figure 1. Starting theory prior to downstream applications. For the algorithmic 238
177 from this m-SMILES representation, MetalloGen proceeds details, including available coordination geometries and 239
C https://doi.org/10.1021/acs.jcim.5c02074
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Figure 2. Histogram of energy differences between MetalloGen-generated and their reference structures. For clarity, only samples with absolute
energy differences below 10 kcal/mol are shown. The energy difference (AE) is defined as the difference between the electronic energies of the
MetalloGen and CSD structures (Eygeaniogen — Ecsp), both optimized using GEN2-xTB. The solid gray line marks AE = 0, and the dashed gray lines
indicate the mean AE for each coordination geometry, shown in the top right corner.

240 examples, we refer to Section S1 of the Supporting
241 Information.

3. RESULTS AND DISCUSSION

242 3.1. The CSD Benchmark Test. We first assessed the
243 reliability of MetalloGen in generating conformers across
244 diverse coordination complexes using a subset of the
245 Cambridge Structural Database (CSD), which contains over
246 500,000 experimentally validated organometallic complexes.”
247 Specifically, we queried version 5.45 of the CSD (June 2024
24 update) using the CSD Python API to construct a

comprehensive benchmark set. We selected mononuclear 249
complexes spanning the eight most frequently observed 250
coordination geometries in the CSD: linear, trigonal planar, 251
square planar, seesaw, tetrahedral, square pyramidal, trigonal 252
253
254
255
256
257
258
259

bipyramidal, and octahedral. In many computational work-
flows, generated structures are optimized using QC methods
for consistent level of accuarcy. As such, we also applied QC
optimizations on the reference CSD structures. This allows us
to evaluate the fidelity of MetalloGen-generated geometries
against a common computational baseline, rather than
comparing them directly to the experimental coordinates.
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Figure 3. (a) Hlustration of D-MAE, calculations for different values of k. As k increases, additional atoms that are more distant from the metal
center are included. (b) Representative examples of complexes with low, medium, and high D-MAE; values. For each pair, the structure on the left
is the CSD reference, and the structure on the right is the struture generated by MetalloGen. (c) Box plot of D-MAE; values for each coordination

geometry.

Considering the substantial computational cost of processing
a large number of compounds, we employed the GFN2-xTB
method, a cheaper alternative to DFT, for QC optimization.
For each geometry type, we sampled 500 different complexes
based on several screening criteria, stated as below:

1. Mononuclear complexes only: Structures containing a
single metal center were selected to simplify the analysis
and refinement process.

. Moderate molecular size: Complexes with a total atom
count less than or equal to 150 were retained, for a
manageable computational cost of QC calculations.

. Valence cutoff: Complexes containing any nonmetal
atom with a valence state greater than 4 were excluded,
except for the metal center itself.

. Successful termination: No error termination occurred
during geometry optimization.

. No imaginary frequency: The Hessian matrix was
successfully computed, and no imaginary frequency was
present.

. Structure preservation: The assigned coordination

geometry (based on shape measures) remained con-
sistent before and after optimization.

7. Adjacency preservation: The metal center’s adjacency
list was preserved, meaning that the set of atoms directly
bonded to the metal did not change.

After applying the above criteria, we yielded a benchmark set
comprising 4,000 GFN2-xTB—optimized structures. For con-
former generation with MetalloGen, up to ten candidate
structures were sampled per complex using various hyper-
parameter settings, as the final relaxed geometries often
converge to different local minima depending on the initial
configuration. All MetalloGen-generated structures were
subsequently reoptimized using the same GFN2-xTB method
to ensure consistency. In this evaluation, molecular graph
representations were extracted directly from the original CSD
SDF files. Additional details on the preparation of both the
CSD benchmark set and the MetalloGen-generated structures
are provided in Sections S2 and S3 of the Supporting
Information.

Among the 4000 test structures, MetalloGen failed to
reproduce reference structures in only three cases, achieving a
99.9% success rate. The three cases are shown in Figure S2. In
each of the three cases, MetalloGen initially produced
chemically plausible conformers, but the final xXTB optimiza-
tion resulted in highly distorted and fragmented structures.
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When the initial conformers were optimized with DFT at the
PBEO0-D3(BJ)/def2-SVP level,'""~'** they converged to stable
structures that closely matched the DFT-optimized reference
structures (see Section S4), confirming the chemical
plausibility of the MetalloGen’s generated structures. The
overall results highlight MetalloGen’s exceptional robustness
and accuracy across a wide spectrum of organometallic
compounds.

Figure 2 shows the energy differences between the structures
generated by MetalloGen and their corresponding reference
structures. To minimize the effect of conformational variability,
we selected the structure with energy closest to the reference.
In addition, only samples with absolute energy differences
below 10 kcal/mol, which account for 98% of the test set, are
shown for clarity. Across all eight geometry types, the overall
mean energy difference was 0.854 kcal/mol, with the mean
energy differences for each type all below 1.4 kcal/mol. The
largest energy difference was observed for the trigonal planar
geometry, with a mean energy difference of 1.34 kcal/mol. The
mean absolute energy difference across the entire data set was
1.15 kcal/mol, with no geometry type exceeding 2.0 kcal/mol.
Notably, about 80% of the structures had energy differences of
less than 1 kcal/mol, which is a commonly accepted threshold
for chemical accuracy.

Among outliers with energy differences above 10 kcal/mol,
most cases were due to variations in hydrogen bonding or
differences in the conformations of flexible ring systems in
ligands, such as twist-boat versus chair forms. Representative
examples of such outliers are shown in Figure S3. These
outliers likely arise because such stabilizing effects are not
explicitly considered during the embedding step, representing
an area for future improvement. Nonetheless, these results
demonstrate that MetalloGen can reliably generate 3D
conformers across a wide range of coordination geometries.

In addition, we evaluated how the generated conformers
structurally differ from the reference by measuring the distance
mean absolute error (D-MAE), defined as

2 ID; — D',

ij<N (1)

D-MAE(D, D,> = m

where N is the number of atoms in each structure, D and D’
are the interatomic distance matrices of the two given
structures. The smaller the D-MAE value, the smaller their
structural difference. This metric has been adopted in several
studies to assess the performance of structure genera-
tion."®™'% To focus on atoms closer to the metal center,
we introduced a localized metric, D-MAE,, defined as follows:
D-MAEk(D, D,> = m 2 lDz} - Dl;l

KAVNE ™ 2 e, 2)
where N, denotes the set of atoms within k-nearest neighbors
of the metal center. An illustration of D-MAE, is shown in
Figure 3a. As k increases, the D-MAE, calculation includes
more atoms that are farther away from the metal center. For
example, when k = 1, only atoms directly bonded to the metal
are included, resulting in very low D-MAE, values that
underestimate structural deviations. In constrast, when all
atoms are included (i.e, k = c0), even minor conformational
changes in distant regions of the ligands affect the value. We
observed that D-MAE values calculated using all atoms (k =
00) were often substantially higher than those computed with
any fixed k values (Figure S4). Upon closer inspection, many

of these outliers could be attributed to crystal packing effects in
the CSD reference structures, which are derived from solid-
state X-ray crystallography. These structures tend to adopt
highly symmetric conformations optimized for crystal packing.
In contrast, MetalloGen-generated conformers are less
symmetric, with flexible ligand groups occasionally forming
intramolecular interactions with the metal center. Representa-
tive examples are provided in Figure SS. Notably, in these
examples, although the D-MAE,, values ranged from 3 to 6 A,
the corresponding D-MAE; values were significantly lower
(less than 0.6 A), and the electronic energy differences
remained small. This indicates that the core coordination
environment around the metal center was well preserved
despite deviations in the outer ligand conformations. Based on
these findings, we selected k = 3 for evaluation in this study, as
it captures the chemically relevant region as effectively as
possible near the metal center while minimizing the influence
of peripheral conformational differences.

Figure 3b shows six representative examples of D-MAE;
ranging from 0.1 to 1.5 A. In the cases with the smallest
deviations (CSD refcode FOGGEP, 0.125 A), the MetalloGen-
and CSD-derived structures are nearly superimposable. For
structures with D-MAE; values around 0.4 A (MEZDAZ,
0.350 A; WEZBIO, 0.489 A), only minor conformational
differences were observed, such as slight distortions in rings or
small rotations of distal methyl groups. For larger D-MAE;
values, the structures remained chemically equivalent to their
references but exhibited different degrees of deviation
depending on the conformational variability of the ligands.

In PECZIK (0.764 A), the deviation arose from the rotation of 392

an axial tetrafluoroborate ligand. In QUFWIX (1.01S5 A), the
large deviation was caused by the rotation of two bulkier
dicyclohexyl(methyl)phosphine ligands in the equatorial plane.
The largest deviation was observed in TAWGUT (1.477 A),
which contains four tris(cyclohexyl)stibine ligands. The large
size and flexibility of these stibine ligands, combined with the
relatively large atomic radius of the coordinating antimony
(Sb) atom, caused the highest D-MAE;.

Figure 3c presents the distribution of D-MAE; values for

393
394

each coordination geometry as a box plot, with the same set of 402

CSD complexes used in the energy comparison of Figure 2.
Most coordination geometries exhibited average D-MAE,
values below 0.5 A, indicating that MetalloGen- and CSD-
derived structures differ only slightly due to minor conforma-
tional variations, which is consistent with the low energy
differences observed earlier. The overall average D-MAE;
across all geometries was 0.399 A, with the smallest deviation
of 0.173 A observed for the square planar geometry. While
most D-MAE values fall within a small range, a few notable
outliers were found in the trigonal planar, square planar,
tetrahedral, and trigonal bipyramidal geometries. In particular,
the square planar geometry had more outliers, ranging from 0.7
to 1.1 A. For the remaining geometries, a few outliers with D-
MAE, values ranging from 1.0 to 1.6 A were found,
comparable to the deviation observed for TAWGUT in Figure
3b. Manual inspection revealed that these large deviations were
primarily caused by significant conformational rearrangements
of ligands directly coordinated to the metal center. Both
energetic and structural analyses suggest that MetalloGen can
generate 3D structures that closely resemble their references
across all geometry types considered in this study.

Finally, we examined the diversity of ligands in the test set
by analyzing three key properties: the total number of atoms,
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Figure 4. Ligand diversity of the CSD structures used in the benchmark. (a) Distribution of ligand properties, including the total number of atoms,
denticity, and hapticity. (b) Representative examples of structures containing multidentate and polyhapto ligands. The top row shows examples
with polyhapto ligands such as Cp rings and z-donating groups, while the bottom row shows structures with multidentate ligands.

426 denticity, and hapticity. Figure 4a shows the distribution of
427 these properties. First, the results show a wide range of ligand
428 sizes in the test set. Ligands with fewer than 30 atoms were the
429 most common, but several hundred had more than 30 atoms,
430 and dozens contained between 121 and 150 atoms.
431 Furthermore, the test set contained a diverse set of structurally
432 complex ligands, including multidentate and polyhapto species,
433 which are the very cases that our work aims to address. While
434 most of the ligands were monodentate or nonhapto, the set
435 included over 1000 multidentate ligands and more than 200
436 polyhapto ligands. The most common hapticities among the
437 polyhapto ligands were 7* and 7,°, corresponding to well-
438 established organometallic motifs. The #* hapticity typically
439 involves side-on binding of ¢ bonds, such as in H, and C—H
440 bonds in o-complexes, as well as side-on binding of 7 bonds,
441 such as in alkenes (e.g, ethylene) in z-complexes. The 7’

hapticity is characteristic of conjugated five-membered rings 442
such as the cyclopentadienyl ligand. MetalloGen successfully 443
generated valid structures for these diverse cases, underscoring 444
its ability to handle a wide range of coordination complexes 44s
with structurally diverse and complex ligands. 446

Figure 4b shows examples of the most complex ligands, 447
successfully generated by MetalloGen. The three examples 448
shown at the top of Figure 4b—MOCQEC, LEXMIL, and 449
OHAHIO—contain polyhapto ligands. MOCQEC is a bridged 4s0
sandwich complex where a single ligand features two aromatic 4s1
rings simultaneously coordinating to the metal center. 452
LEXMIL is a trigonal planar ansa-metallocene composed of a 453
bridged bidentate ligand with two Cp rings and a monodentate 4s4
ligand bound to the metal center through a linear n* 4ss
interaction. OHAHIO is another trigonal planar ansa-metal- 456
locene that features a bidentate ligand with two Cp rings linked 457
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Figure 5. Testing MetalloGen on the MOR41 benchmark set, comprising 64 organometallic complexes derived from 38 reactions. (a) Histogram
showing energy differences of MetalloGen-generated structures from their references, which were optimized at the PBE0-D3(BJ)/def2-SVP level.
Blue bars on the right side of the dashed line represent structures with energy differences exceeding 5 kcal/mol, which were further refined using
CREST. (b) The energy differences of the eight structures above S kcal/mol without CREST (sky blue) and those after applying CREST (deep
blue). For each coordination complex, the ten lowest-energy conformers identified by CREST were individually reoptimized at the same DFT level.
(c—d) PR24 and PR41 conformers generated by MetalloGen, with and without CREST. Cyclohexyl groups in twist-boat conformations are
highlighted in red; chair conformations are highlighted in blue. In the PR41 conformer generated by MetalloGen and CREST, the carbon—carbon
double bond weakly interacts with the Ru metal center (C—Ru distance of 2.9 A, highlighted in pink), further stabilizing the conformer.

458 by a three-atom bridge, along with a monodentate ligand
459 coordinating through an #* interaction. The bottom three
460 examples (HOXRIV, YATYAW, and YOSNEC) feature
461 exceptionally high ligand denticity. HOXRIV is an octahedral
462 complex with a tetradentate porphyrin ring in the equatorial
463 position and two axially bound pyridine ligands. YATYAW is a
464 square pyramidal complex with a pentadentate ligand, the
465 highest denticity observed in our test set. YOSNEC is a
466 trigonal bipyramidal complex with a tridentate ligand that
467 includes a single 7°-binding site at one of the equatorial
468 positions. These examples highlight the complexity of
469 generating 3D conformers for the CSD test set and
470 demonstrate MetalloGen’s robustness in handling such
471 challenging cases.

472 3.2. The MOR41 Benchmark Set. The MOR41 bench-
473 mark set contains 41 closed-shell organometallic reactions
474 representative of key chemical transformations commonly
475 found in transition metal chemistry and catalysis, 1nclud1n%
476 complexation, oxidative addition, and ligand exchange
477 Compared to the CSD data set, MOR41 offers a more realistic
478 benchmark for practical applications and allows for the
479 evaluation of MetalloGen’s potential for automated analysis
480 of organometallic reactions. Moreover, these reactions often
481 involve complexes with # interactions and require accurate
482 generation of structures with precise stereochemistry, where
483 existing methods are likely to struggle. Of the 41 reactions,
484 those involving polynuclear complexes were excluded, yielding
485 a final set of 38 reactions comprising 64 mononuclear
486 organometallic compounds. The original benchmark data set
487 was provided at the DLPNO—CCSD(T)/CBS(def2-TZVPP/
488 def2-QZVPP) level of theory, which is prohibitively expensive.
489 To make the study computationally feasible, we reoptimized all
490 reference geometries and evaluated their energies at the PBEO-

D3(BJ) level of theory.'””'"" For these calculations we used 491
the def2- SVP basis set and corresponding effective core 452
potentlals, as obtained from the Basis Set Exchange 9 403
Then, we prepared the m-SMILES representations for each 494
complex (See Figure S6 for examples) and used them as input 495
to MetalloGen to regenerate their 3D structures. The resulting 496
geometries were also optimized at the PBE0-D3(BJ)/def2-SVP 497
level to ensure consistency. All structures were validated via 498
vibrational frequency analysis. Geometry optimizations and 499
frequency calculations were performed using Gaussian 16.""7 s00
Additional computational details can be found in Section S8. so1

Figure Sa presents the energy differences between s02fs
MetalloGen-generated structures and their corresponding s03
reference structures. Of the 64 structures analyzed, 56 had so4
energy differences of less than 5 kcal/mol, and S1 of these were sos
almost identical to the reference. These results manifest the sos
forte of MetalloGen in generating accurate 3D structures of s07
organometallic complexes frequently observed in practical sos
applications. The remaining eight structures with energy soo

differences above 5 kcal/mol exhibited conformationally
flexible ligands, such as tricyclohexylphosphine (PCy;; PR41,
ED41, ED24, PR24), triisopropylphosphine (P(i-Pr);; EDO07,
PRO7), and 1,3-bis(2,4,6-trimethylphenyl)imidazole (SIMes;
PR16, PR2S). These bulky ligands with large torsional degrees
of freedom led to energy differences as high as 37.0 kcal/mol
(Figure Sc, PR24 with two PCys, ligands).

To examine whether the observed energy discrepancies can
be resolved through additional conformational sampling, we
applied the CREST algorithm to the eight structures.'”®
Positional constraints were imposed on the metal center and
all donor atoms to preserve its stereochemistry. The GFN2-
xTB method was used for the CREST sampling, and the
resulting ten lowest-energy conformers were subsequently
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reoptimized with DFT. Additional details regarding the
CREST sampling are provided in Section S9. As shown in
Figure Sb, conformers with energies comparable to those of
their respective references were obtained for all eight
complexes. The most dramatic decrease in energy was
observed for PR24, where four of the six cyclohexyl groups
(Figure Sc, highlighted in orange) switched from an unstable
twist-boat conformation to a more favorable chair conforma-
tion (Figure Sc, highlighted in blue). In this new conformer,
with all six cyclohexyl rings adopting the chair conformation,
the energy is 40.4 kcal/mol lower than that of the previously
obtained structure and only 3.4 kcal/mol higher than the
reference. Interestingly, for PR41, we identified a new
conformer lying 12.3 kcal/mol below its earlier counterpart
and 7.9 kcal/mol below the reference structure. This
substantial stabilization comes from the favorable conforma-
tional switch from twist-boat to chair, along with an additional
interaction between the Ru center and a nearby carbon—
carbon double bond (Figure Sd). These results demonstrate
that combining MetalloGen with a conventional conforma-
tional sampling tool like CREST can yield low-energy
structures suitable for computational studies of organometallic
reactions.

Building upon the high reliability of MetalloGen in adjusting
the stereochemistry of coordination complexes, we further
evaluated whether it can systematically enumerate all feasible
stereoisomers of a given complex. As a case study, we selected
the PRO8 complex from the MOR41 benchmark set, an
octahedral Ir(III) complex featuring four different ligand types,
including two identical triphenylphosphine and two hydride
ligands—providing a suitable test case for stereochemical
variation. We enumerated all possible stereoisomeric config-
urations arising from ligand permutations across the six
coordination sites and used MetalloGen to generate the
corresponding 3D structures. Each structure was subjected to
the CREST algorithm to identify low-energy conformations,
and the lowest-energy conformer for each stereoisomer was
subsequently refined using DFT at the PBE0-D3(BJ)/def2-
SVP level of theory.

Figure 6 shows the eight stereoisomers successfully
generated by MetalloGen. The resulting structures displayed
a range of relative electronic energies, implying distinct
stereoisomeric configurations compared to the original
complex. Among them, two enantiomeric pairs (isomers 5—6
and 7—8) were identified, each exhibiting nearly identical
electronic energies (differences less than 1 kcal/mol),
consistent with mirror symmetry. Notably, two stereoisomers
(isomers 4 and 7) were found to be more stable than the
original configuration. These results demonstrate that Metall-
0Gen can be effectively used to systematically explore metal-
centered stereoisomerism, enabling the identification of more
stable or catalytically relevant configurations in coordination
complexes.

3.3. Application to Mechanistic Studies of Organo-
metallic Catalysis. The final test set consists of three catalytic
reactions characterized by distinct coordination geometries.
The first example is a Rh(III)-catalyzed direct C—H amination
involving a pentamethylcyclopentadienyl (Cp*) ligand, studied
by Park et al.'” The second is a room-temperature Cu-
catalyzed aryl bromide amination, developed by Kim et al.'"’
The third is a hydroaryloxylation of an olefin catalyzed by a
pincer iridium complex, reported by Haibach et al.''' These
systems were selected to cover a broad range of coordination

!

isomer 2
AE = 6.80 kcal/mol

S#

isomer 5
AE = 6.14 kcal/mol

isomer 1
AE = 0.0 kcal/mol

isomer 4
AE = -1.66 kcal/mol

isomer 3
AE = 13.18 kcal/mol

> ,

isomer 8
AE = 6.14 kcal/mol AE = -1.39 kcal/mol AE = -1.34 kcal/mol

isomer 6 isomer 7

Figure 6. Demonstration of MetalloGen’s ability to systematically
generate all feasible stereoisomers. The PR08 complex (from the
MOR41 benchmark set) is an octahedral Ir(III) complex featuring
four distinct ligand types: two triphenylphosphine ligands, two
hydrides, one chloride, and one carbonyl. All eight theoretically
possible stereoisomers were successfully generated. Each structure was
optimized at the PBE0-D3(B]J)/def2-SVP level of theory, and relative
electronic energies (in kcal/mol) are reported with respect to the
original configuration (isomer 1).

environments: Park et al. includes trigonal planar and
tetrahedral geometries; Kim et al. features predominantly
square planar geometries; and Haibach et al. exhibits various
geometries such as square planar, square pyramidal, and
octahedral.

Compared to the previous benchmarks, these catalytic
reactions impose additional challenges, including high-energy
intermediates (e.g., the Rh(V) nitrenoid species in Park et al.),
sterically hindered ligands (e.g., N, Nz-diarylbenzene-l,Z-
diamine ligands of Kim et al.), and stereochemical require-
ments critical for regioselective outcomes (e.g., Markovnikov-
type addition in Haibach et al.). As MetalloGen is designed to
provide reasonable initial guesses for local minima structures,

we focus on reaction energy calculations (energies of 600

intermediates for each elementary step), leaving activation
energies and transition state characterization for future work.
To generate the 3D structures of the intermediates, CREST
was used to sample low-energy conformers. The lowest-energy
conformer for each structure was then reoptimized using DFT.
The DFT calculations were performed following the computa-
tional protocols outlined in the original studies. More details
can be found in Sections S8 and S9 of the Supporting
Information.

Figure 7 shows the reaction energy profiles obtained using
MetalloGen, alongside the reference energy profile reported in
the original studies. MetalloGen successfully reproduced the
energy profiles along all three catalytic cycles, with most
structures differing by less than 3 kcal/mol and none deviating
more than S kcal/mol from the reference values. Structural
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Figure 7. Energy profiles of the three catalytic reactions obtained with MetalloGen combined with CREST. The reference energies are shown in
blue, and the energies from MetalloGen-generated structures are shown in black. All energies are given relative to the first reference structure in
each cycle. (a) The reaction energy profile of the C—H amination of 2-phenylpyridine with methanesulfonyl azide and a Cp*Rh(III) catalyst by
Park et al.'”” (b) The reaction energy profile of the C—N coupling of 4-bromoanisole and morpholine, catalyzed by a diamine-Cu complex, by Kim

et al."'® (c) The reaction energy profile of the propene hydroaryloxylation catalyzed by a pincer-Ir complex, by Haibach et al

1111

analysis reveals that these energy differences are mainly due to
conformational variations. In particular, for the pincer-Ir
system, MetalloGen identified an intermediate conformer
that is significantly more stable than the one reported in the
reference. This intermediate arises from a 1,2-addition of the
Ir—O bond to the double bond of the 7*-coordinated propene,
forming a four-membered ring with new Ir—C and C—O bonds
(Figure 7c, the fifth intermediate). The new conformer is 6.2
kcal/mol more stable than the corresponding reference
structure. These results demonstrate MetalloGen’s ability to
reliably reproduce, and even in some cases, improve the

reference structures.

4. CONCLUSIONS AND OUTLOOK

Generating the 3D conformers of coordination complexes is a 628
crucial step in computational workflows for studying metal 620
coordination complexes. While existing methods have made 630
substantial progress, they remain limited in handling 631
complexes with side-on bound and polyhapto ligands, which 632
are commonly encountered in organometallic chemistry. To 633
address these gaps, we developed MetalloGen, a new ¢34
conformer generation method that supports a wide range of 635
coordination geometries, ligand types, and stereochemical 636
configurations. MetalloGen was evaluated on a curated subset 637
of CSD structures encompassing eight commonly observed 638
coordination geometries. The results show that MetalloGen 639
reliably generates chemically valid conformers across a wide 640
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641 range of ligands, varying in both denticity and hapticity, under
642 diverse coordination environments. Building on this robust-
643 ness, we applied MetalloGen to the MOR41 benchmark set
644 and three catalytic reactions, successfully reproducing the
645 structures of all mononuclear species involved in these
646 reactions. This enabled a fully automated workflow to calculate
647 reaction energy profiles across a diverse set of organometallic
648 reactions. When coupled with CREST, MetalloGen can yield
649 structures with electronic energies comparable to or lower than
650 those of the reference structures. In addition, MetalloGen
651 supports a SMILES-like input format, termed m-SMILES,
652 which enables users to represent diverse coordination
653 complexes and directly generate their 3D structures. Overall,
654 MetalloGen offers an efficient and automated solution for
6ss generating 3D structures of coordination complexes with
6s6 minimal manual intervention, particularly those relevant to
657 organometallic catalysis.

658  Despite these advancements, several limitations remain.
6s9 First, MetalloGen currently supports only mononuclear
660 complexes. As a result, three out of 41 reactions in the
661 MOR41 benchmark set involving binuclear species were
662 excluded from this study. Extending MetalloGen to support
663 polynuclear systems would expand its applicability to a broader
664 range of coordination environments, including those com-
66s monly found in multinuclear metalloenzymes, catalysts, and
666 other functional materials.''>~"'* Second, MetalloGen shows a
667 higher failure rate for complexes with high coordination
668 numbers (typically seven or more). This limits its applicability
669 to lanthanide and actinide complexes, where alternative tools
670 such as Architector may be more appropriate, although these
671 tools still face limitations when dealing with side-on or
672 polyhapto ligands. Lastly, MetalloGen does not guarantee
673 generation of the lowest-energy conformers. As shown earlier,
674 some generated structures displayed higher energies due to the
675 absence of stabilizing features such as hydrogen bonding or
676 favorable ring conformations. While subsequent conforma-
677 tional refinement using tools like CREST can alleviate these
678 issues, such procedures entail significant computational cost.
679  The last two limitations primarily arise from the RDKit-
680 based embedding step. This step often fails for complexes with
681 high coordination numbers, thereby interrupting the subse-
682 quent steps in MetalloGen. Moreover, the embedding
683 algorithm lacks chemical awareness of subtle stabilizing
684 interactions, which can lead to the generation of higher-energy
685 conformers. Future work could advance in several directions.
686 One is the development of metal-aware distance geometry
687 embedding algorithms to improve the success rate of
688 conformer generation for complexes with high coordination
689 numbers. Another promising direction is the integration of
690 machine learning approaches, particularly diffusion-based
691 generative models, as a means to directly generate low-energy
692 conformers without relying on exhaustive sampling. Such
693 capabilities have already been demonstrated in prior studies on
694 organic molecular systems.””'* With sufficient data augmenta-
69s tion using MetalloGen, these strategies could be extended to
696 coordination complexes. Nevertheless, the current version of
697 MetalloGen provides a practical and effective solution that
698 complements existing tools for high-throughput screening and
699 automated mechanistic studies in coordination chemistry,
700 serving as a solid foundation for future computational
701 workflows.
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