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4 ABSTRACT: Conformer generation is crucial for computational chemistry tasks such as structure-based modeling and property
5 prediction. Although reliable methods exist for organic molecules, coordination complexes remain challenging due to their diverse
6 coordination geometries, ligand types, and stereochemistry. Current tools often lack the flexibility and reliability required for these
7 systems. Here, we introduce MetalloGen, a novel algorithm designed for the automated generation of 3D conformers of
8 mononuclear coordination complexes. MetalloGen accepts either SMILES strings or molecular graph representations as input and
9 enables the generation of reliable conformers, including those with multiple polyhapto ligands, which are typically inaccessible to

10 conventional conformer generators. To rigorously assess MetalloGen’s performance, we benchmarked it on three distinct data sets: a
11 curated collection of experimentally determined structures from the Cambridge Structural Database, the MOR41 benchmark set
12 encompassing a wide range of organometallic reactions and complex ligand environments, and three catalytic reactions. Across all
13 test sets, MetalloGen consistently reproduced appropriate geometries with high fidelity and demonstrated robust stereochemical
14 control, even for challenging cases involving multiple polyhapto ligands. The versatility and reliability of MetalloGen make it a
15 valuable tool for more accurate and efficient computational investigations in inorganic and organometallic chemistry.

1. INTRODUCTION

16 The generation of 3D molecular conformers is a key step in
17 many computational chemistry workflows.1,2 Given a molec-
18 ular graph, conformers are typically constructed using methods
19 such as distance geometry (DG),3 rule-based approaches like
20 OMEGA,4 or more recently, machine learning-based meth-
21 ods.5−12 These initial structures are then refined using force
22 fields (FF), including the Universal Force Field,13 Merck
23 Molecular Force Field,14,15 and GFN-FF.16 For greater
24 accuracy, semiempirical methods such as PM617 and GFN-
25 xTB18−20 or more sophisticated density functional theory
26 (DFT) approaches can be employed. The resulting optimized
27 geometries serve as the foundation for computing molecular
28 and electronic properties, including dipole moments, atomic
29 partial charges, orbital energies, and thermochemical functions.
30 These properties can be used for various applications such as
31 quantitative structure−activity relationship modeling,21−23

32 virtual screening,24,25 machine learning database construc-
33 tion,26−32 reaction mechanism study,22,33−39 etc. Therefore, a
34 reliable 3D conformer generation method is a must in
35 computational chemistry workflows.

36For typical organic molecules, the generation of conformers
37is well established. In particular, DG methods such as
38ETKDG,2,40 combined with force field optimizations, enable
39the production of accurate conformers. This approach is widely
40used in fields such as drug discovery24,41 and materials
41discovery.42−45 However, unlike organic molecules, coordina-
42tion complexes pose significant challenges for generating 3D
43conformers due to their structural diversity and complex-
44ity.46−57 These complexes can have a wide range of metal
45centers spanning the s-, p-, d-, and f-blocks. Moreover,
46structural diversity is further increased by the various metal−
47ligand binding modes, including chelation and hapticity. This
48complexity is compounded by the variability of stereoisomers
49that can arise within a given coordination environment. As a
50result, conformer generation strategies developed for organic
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51 molecules are not directly applicable to coordination
52 complexes.
53 To address this challenge, several 3D conformer generation
54 tools for coordination complexes have been developed over the
55 past decade.58−65 One of the earliest tools is MolSimplify,
56 developed by the Kulik group.58 This method uses rigid body
57 manipulations and force field optimizations to position and
58 orient mono- and bidentate ligands around a metal center.
59 Later, the Reiher group introduced Molassembler,59 which
60 offers a generalized framework for constructing molecular
61 graphs to enable the detailed classification of coordination
62 geometries and stereochemistry, as well as the generation of
63 conformers. More recent works include Architector,60 which,
64 for the first time, builds on earlier works to generate
65 conformers of f-block organometallic complexes, and the
66 MACE program,61 developed to generate all possible stereo-
67 chemical configurations of octahedral and square planar
68 complexes. In the latest developments, machine learning−
69 based methods, particularly diffusion-based generative models,
70 have been explored for structure generation in coordination
71 complexes as alternatives to algorithm-based approaches.66−70

72 The aforementioned methods have been widely used to
73 explore the broad chemical space of transition metal complex
74 catalysts,71−76 metal−organic frameworks,73,77,78 molecular
75 magnetic materials,79−82 and other related systems.57,83−87

76 Several recent reviews provide comprehensive overviews of
77 advances in conformer generation for coordination complexes
78 and their applications.51,76,88,89

79 Despite such significant advancements, existing tools still
80 face limitations in the automated generation of 3D conformers
81 for certain classes of coordination complexes, many of which
82 play key roles in coordination chemistry. For example,
83 MolSimplify is not automated for systems containing high-

84denticity or polyhapto ligands, as it treats ligands as rigid
85entities. In such cases, ligands must be manually prepared as
86predefined geometries�referred to as “custom cores”�to
87enable conformer generation. While Architector can generate
883D conformers of complexes with high-denticity ligands
89without manual intervention through the DG method, it
90does not support side-on bound ligands, such as η2-ethylene in
91Zeise’s salt, and polydentate haptic ligands with donor atoms
92that do not participate in haptic bonding. Such ligands are
93especially common in organometallic catalysis, including olefin
94polymerization, hydrogenation, cross-coupling, and the activa-
95tion of molecules from dihydrogen to alkanes.74,90− Similarly,
96MACE cannot handle ligands with η interactions and is limited
97to square planar and octahedral geometries, despite offering
98unique features such as the systematic enumeration of all
99feasible stereoisomers. Diffusion-based generative models also
100do not address these limitations, as these studies have focused
101on the generative design of novel coordination complexes
102rather than targeted generation of conformers from a given
103molecular graph.
104In this work, we present a new conformer generation tool
105called MetalloGen for diverse coordination complexes, to
106address the aforementioned limitations. Inspired by Architec-
107tor and MACE, MetalloGen employs the DG method with
108slight modifications to support side-on bound and polyhapto
109ligands while enabling precise control over stereochemical
110configurations. Additionally, it supports conformer generation
111directly from a SMILES-like representation that encodes the
112molecular graph and coordination environment, enabling
113seamless integration with many computational workflows. As
114a result, MetalloGen can generate conformers across a broad
115range of coordination geometries and ligand types�including
116both polydentate and polyhapto ligands�that are commonly

Figure 1. Overview of the MetalloGen algorithm. (a) MetalloGen begins with a modified SMILES (m-SMILES) representation that encodes the
metal center (highlighted in yellow), ligands (highlighted in various colors), and overall coordination geometry (trigonal bipyramidal). Each donor
atom is labeled with an atom mapping number, enclosed in brackets. This number, placed after a colon (e.g., [Cl-:2]), indicates the
coordination site within the coordination geometry. (b) From this input, a molecular graph is constructed that includes stereochemistry.
Alternatively, this graph can be provided directly by the user. (c) Dummy atoms are added at each polyhapto coordination site to facilitate the
handling of polyhapto ligands. (d) A rough 3D structure with the correct stereochemistry is generated using a constrained embedding algorithm.
(e) In the final step, dummy atoms are removed, and the structure is refined using force field (FF) or quantum chemistry (QC) methods.
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117 encountered in organometallic chemistry and can be readily
118 used for related applications.
119 To rigorously evaluate MetalloGen’s performance, we
120 benchmarked the algorithm against a curated subset of
121 experimentally characterized structures from the Cambridge
122 Structural Database (CSD). These benchmarks demonstrate
123 that MetalloGen reliably generates 3D conformers across
124 diverse coordination environments, highlighting its suitability
125 for high-throughput computational screening of metal-
126 containing compounds, regardless of the application domain
127 or specific use case.
128 We further assessed MetalloGen using the MOR41 bench-
129 mark, which comprises 41 diverse organometallic reactions
130 originally curated by expert computational chemists to evaluate
131 DFT methods.97 This set includes many side-on bound
132 ligands, such as ethylene and cyclohexene, along with a variety
133 of coordination geometries. Accurate conformer generation for
134 these complexes requires precise control of stereochemistry.
135 Despite this challenge, MetalloGen successfully reproduced all
136 64 mononuclear organometallic complexes involved in the
137 MOR41 set.
138 Finally, we applied MetalloGen to three catalytic systems to
139 evaluate its ability to automatically compute reaction energies
140 for elementary steps in each catalytic cycle. In all cases, we
141 found that the resulting energy profiles closely matched the
142 corresponding reference data.
143 In what follows, we first describe the overall workflow of
144 MetalloGen. Next, we present a detailed evaluation of its
145 performance across the introduced three test sets. Finally, we
146 conclude with a discussion of our findings and future directions
147 for further development.

2. METHODS
f1 148 Figure 1 illustrates a simplified workflow of our algorithm using

149 a trigonal bipyramidal pyridine-bridged zirconocene dichloride
150 compound as an example. We devised a modified SMILES
151 representation for mononuclear coordination complexes, called
152 m-SMILES, which serves as input for MetalloGen to generate
153 the corresponding 3D conformers (Figure 1a). This
154 representation differs from the SMILES-based format recently
155 developed by Rasmussen et al.,98 which was designed to be
156 directly parsable by RDKit, enabling seamless integration with
157 cheminformatics tools. Specifically, m-SMILES encodes the
158 metal center (e.g., [Zr+4], highlighted in yellow), the
159 SMILES strings of individual ligands, and the overall
160 coordination geometry (e.g., 5_trigonal_bipyrami-
161 dal). Ligands are separated by vertical bars, and their donor
162 atoms directly coordinated to the metal are indicated by square
163 brackets. Coordination sites are assigned using atom mapping
164 numbers; for example, [Cl-:2] indicates that a chloro
165 ligand is placed at coordination site 2 (highlighted in light
166 green), and [C-:4]2[CH:4]=[CH:4][CH:4]
167 =[CH:4]2 specifies that the five carbon atoms of a
168 cyclopentadienyl (Cp) ring are bonded to the metal center
169 at coordination site 4 (highlighted in purple-blue). While this
170 format is not directly RDKit-compatible, it offers a more
171 expressive and flexible syntax that facilitates intuitive
172 specification of coordination geometry and metal-centered
173 stereochemistry. In particular, it enables straightforward
174 encoding of structurally complex ligands, such as polydentate
175 and polyhapto systems like the pyridine-bridged bis-
176 (cyclopentadienyl) ligand illustrated in Figure 1. Starting
177 from this m-SMILES representation, MetalloGen proceeds

178through four key steps to generate a reliable 3D conformer:
179molecular graph construction, dummy atom addition, 3D
180embedding, and structural refinement.
181In the first step, a molecular graph is constructed from the
182given m-SMILES, encoding both atomic connectivity and
183stereochemical details (Figure 1b). This graph is built by
184connecting all donor atoms in each ligand and the metal atom.
185In Figure 1b, edges are added between each carbon atom of
186the Cp rings and the zirconium center, resulting in a formal
187valence of 13 for the metal. If this connectivity information is
188already provided, MetalloGen can bypass this step and directly
189proceed to 3D conformer generation using the given
190connectivity.
191While this graph can be chemically intuitive, we found that
192direct 3D embedding of such a high-valence molecular graph
193often fails when handling it with standard cheminformatics
194tools (e.g., RDKit). One possible reason for this is the high
195coordination number of the metal (e.g., 13 for Zr in Figure
1961b), which exceeds the typical valency encountered in organic
197molecules, usually no more than six. To mitigate this issue,
198MetalloGen introduces dummy atoms at each polyhapto
199coordination site (Figure 1c). Each Cp ring is now connected
200to a dummy sulfur atom, which in turn coordinates with the
201metal center. This effectively reduces the bond count of the
202zirconium atom from 13 to 5, significantly facilitating the
203embedding process. This dummy-atom insertion is a key step
204in our algorithm, allowing reliable 3D embedding of complexes
205with haptic ligands�regardless of their denticity�while
206preserving the intended coordination geometry (e.g., trigonal
207bipyramidal). From this modified graph, MetalloGen proceeds
208to the 3D embedding step. It employs RDKit’s built-in
209constrained embedding algorithm, which is based on the DG
210method, to construct an initial 3D structure (Figure 1d). To
211enforce correct stereochemistry, MetalloGen applies positional
212constraints derived from predefined coordination templates.
213These templates consist of sets of normalized direction vectors
214corresponding to each coordination site, guiding the spatial
215arrangement of donor atoms directly bonded to the metal
216center (highlighted in yellow in Figure 1c). In total, 30
217templates are implemented, adapted from the Architector
218toolkit, covering a wide range of coordination environments.
219In the final step, the generated structure undergoes structural
220refinement to restore target metal−ligand distances and
221optimize ligand geometries (Figure 1e). This step refines
222distance inaccuracies caused by dummy atoms and other
223distortions that can incur during embedding. The refinement is
224carried out using constrained scan optimization, in which
225geometric constraints are applied to the ligand atoms
226coordinated to the metal center. The procedure begins with
227an FF method, and if the FF-based optimization fails to
228produce a chemically reasonable structure, a quantum chemical
229(QC) method is applied. In MetalloGen, GFN2-xTB is used as
230the default QC method, offering a good balance between
231computational efficiency and chemical accuracy. As a result,
232MetalloGen produces chemically valid 3D conformers
233corresponding to the input m-SMILES representation, even
234for a complex that includes a multidentate haptic ligand.
235However, the resulting conformers are only partially optimized
236due to the imposed geometric constraints. Therefore, we note
237that they should be further relaxed at the desired level of
238theory prior to downstream applications. For the algorithmic
239details, including available coordination geometries and
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240 examples, we refer to Section S1 of the Supporting
241 Information.

3. RESULTS AND DISCUSSION
242 3.1. The CSD Benchmark Test. We first assessed the
243 reliability of MetalloGen in generating conformers across
244 diverse coordination complexes using a subset of the
245 Cambridge Structural Database (CSD), which contains over
246 500,000 experimentally validated organometallic complexes.99

247 Specifically, we queried version 5.45 of the CSD (June 2024
248 update) using the CSD Python API to construct a

249comprehensive benchmark set. We selected mononuclear
250complexes spanning the eight most frequently observed
251coordination geometries in the CSD: linear, trigonal planar,
252square planar, seesaw, tetrahedral, square pyramidal, trigonal
253bipyramidal, and octahedral. In many computational work-
254flows, generated structures are optimized using QC methods
255for consistent level of accuarcy. As such, we also applied QC
256optimizations on the reference CSD structures. This allows us
257to evaluate the fidelity of MetalloGen-generated geometries
258against a common computational baseline, rather than
259comparing them directly to the experimental coordinates.

Figure 2. Histogram of energy differences between MetalloGen-generated and their reference structures. For clarity, only samples with absolute
energy differences below 10 kcal/mol are shown. The energy difference (ΔE) is defined as the difference between the electronic energies of the
MetalloGen and CSD structures (EMetalloGen − ECSD), both optimized using GFN2-xTB. The solid gray line marks ΔE = 0, and the dashed gray lines
indicate the mean ΔE for each coordination geometry, shown in the top right corner.
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260 Considering the substantial computational cost of processing
261 a large number of compounds, we employed the GFN2-xTB
262 method, a cheaper alternative to DFT, for QC optimization.
263 For each geometry type, we sampled 500 different complexes
264 based on several screening criteria, stated as below:

265 1. Mononuclear complexes only: Structures containing a
266 single metal center were selected to simplify the analysis
267 and refinement process.
268 2. Moderate molecular size: Complexes with a total atom
269 count less than or equal to 150 were retained, for a
270 manageable computational cost of QC calculations.
271 3. Valence cutoff: Complexes containing any nonmetal
272 atom with a valence state greater than 4 were excluded,
273 except for the metal center itself.
274 4. Successful termination: No error termination occurred
275 during geometry optimization.
276 5. No imaginary frequency: The Hessian matrix was
277 successfully computed, and no imaginary frequency was
278 present.
279 6. Structure preservation: The assigned coordination
280 geometry (based on shape measures) remained con-
281 sistent before and after optimization.

2827. Adjacency preservation: The metal center’s adjacency
283list was preserved, meaning that the set of atoms directly
284bonded to the metal did not change.

285After applying the above criteria, we yielded a benchmark set
286comprising 4,000 GFN2-xTB−optimized structures. For con-
287former generation with MetalloGen, up to ten candidate
288structures were sampled per complex using various hyper-
289parameter settings, as the final relaxed geometries often
290converge to different local minima depending on the initial
291configuration. All MetalloGen-generated structures were
292subsequently reoptimized using the same GFN2-xTB method
293to ensure consistency. In this evaluation, molecular graph
294representations were extracted directly from the original CSD
295SDF files. Additional details on the preparation of both the
296CSD benchmark set and the MetalloGen-generated structures
297are provided in Sections S2 and S3 of the Supporting
298Information.
299Among the 4000 test structures, MetalloGen failed to
300reproduce reference structures in only three cases, achieving a
30199.9% success rate. The three cases are shown in Figure S2. In
302each of the three cases, MetalloGen initially produced
303chemically plausible conformers, but the final xTB optimiza-
304tion resulted in highly distorted and fragmented structures.

Figure 3. (a) Illustration of D-MAEk calculations for different values of k. As k increases, additional atoms that are more distant from the metal
center are included. (b) Representative examples of complexes with low, medium, and high D-MAE3 values. For each pair, the structure on the left
is the CSD reference, and the structure on the right is the struture generated by MetalloGen. (c) Box plot of D-MAE3 values for each coordination
geometry.
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305 When the initial conformers were optimized with DFT at the
306 PBE0-D3(BJ)/def2-SVP level,100−102 they converged to stable
307 structures that closely matched the DFT-optimized reference
308 structures (see Section S4), confirming the chemical
309 plausibility of the MetalloGen’s generated structures. The
310 overall results highlight MetalloGen’s exceptional robustness
311 and accuracy across a wide spectrum of organometallic
312 compounds.

f2 313 Figure 2 shows the energy differences between the structures
314 generated by MetalloGen and their corresponding reference
315 structures. To minimize the effect of conformational variability,
316 we selected the structure with energy closest to the reference.
317 In addition, only samples with absolute energy differences
318 below 10 kcal/mol, which account for 98% of the test set, are
319 shown for clarity. Across all eight geometry types, the overall
320 mean energy difference was 0.854 kcal/mol, with the mean
321 energy differences for each type all below 1.4 kcal/mol. The
322 largest energy difference was observed for the trigonal planar
323 geometry, with a mean energy difference of 1.34 kcal/mol. The
324 mean absolute energy difference across the entire data set was
325 1.15 kcal/mol, with no geometry type exceeding 2.0 kcal/mol.
326 Notably, about 80% of the structures had energy differences of
327 less than 1 kcal/mol, which is a commonly accepted threshold
328 for chemical accuracy.
329 Among outliers with energy differences above 10 kcal/mol,
330 most cases were due to variations in hydrogen bonding or
331 differences in the conformations of flexible ring systems in
332 ligands, such as twist-boat versus chair forms. Representative
333 examples of such outliers are shown in Figure S3. These
334 outliers likely arise because such stabilizing effects are not
335 explicitly considered during the embedding step, representing
336 an area for future improvement. Nonetheless, these results
337 demonstrate that MetalloGen can reliably generate 3D
338 conformers across a wide range of coordination geometries.
339 In addition, we evaluated how the generated conformers
340 structurally differ from the reference by measuring the distance
341 mean absolute error (D-MAE), defined as

D D
N N

D DD MAE( , )
1

( 1) i j N
ij ij

,

= | |
<342 (1)

343 where N is the number of atoms in each structure, D and D′
344 are the interatomic distance matrices of the two given
345 structures. The smaller the D-MAE value, the smaller their
346 structural difference. This metric has been adopted in several
347 studies to assess the performance of structure genera-
348 tion.103−105 To focus on atoms closer to the metal center,
349 we introduced a localized metric, D-MAEk, defined as follows:

D D D DD MAE ( , )
1

( 1)k
k k i j

ij ij
, k

=
| | | |

| |
350 (2)

351 where k denotes the set of atoms within k-nearest neighbors
352 of the metal center. An illustration of D-MAEk is shown in

f3 353 Figure 3a. As k increases, the D-MAEk calculation includes
354 more atoms that are farther away from the metal center. For
355 example, when k = 1, only atoms directly bonded to the metal
356 are included, resulting in very low D-MAE1 values that
357 underestimate structural deviations. In constrast, when all
358 atoms are included (i.e., k = ∞), even minor conformational
359 changes in distant regions of the ligands affect the value. We
360 observed that D-MAE values calculated using all atoms (k =
361 ∞) were often substantially higher than those computed with
362 any fixed k values (Figure S4). Upon closer inspection, many

363of these outliers could be attributed to crystal packing effects in
364the CSD reference structures, which are derived from solid-
365state X-ray crystallography. These structures tend to adopt
366highly symmetric conformations optimized for crystal packing.
367In contrast, MetalloGen-generated conformers are less
368symmetric, with flexible ligand groups occasionally forming
369intramolecular interactions with the metal center. Representa-
370tive examples are provided in Figure S5. Notably, in these
371examples, although the D-MAE∞ values ranged from 3 to 6 Å,
372the corresponding D-MAE3 values were significantly lower
373(less than 0.6 Å), and the electronic energy differences
374remained small. This indicates that the core coordination
375environment around the metal center was well preserved
376despite deviations in the outer ligand conformations. Based on
377these findings, we selected k = 3 for evaluation in this study, as
378it captures the chemically relevant region as effectively as
379possible near the metal center while minimizing the influence
380of peripheral conformational differences.
381Figure 3b shows six representative examples of D-MAE3
382ranging from 0.1 to 1.5 Å. In the cases with the smallest
383deviations (CSD refcode FOGGEP, 0.125 Å), the MetalloGen-
384and CSD-derived structures are nearly superimposable. For
385structures with D-MAE3 values around 0.4 Å (MEZDAZ,
3860.350 Å; WEZBIO, 0.489 Å), only minor conformational
387differences were observed, such as slight distortions in rings or
388small rotations of distal methyl groups. For larger D-MAE3
389values, the structures remained chemically equivalent to their
390references but exhibited different degrees of deviation
391depending on the conformational variability of the ligands.
392In PECZIK (0.764 Å), the deviation arose from the rotation of
393an axial tetrafluoroborate ligand. In QUFWIX (1.015 Å), the
394large deviation was caused by the rotation of two bulkier
395dicyclohexyl(methyl)phosphine ligands in the equatorial plane.
396The largest deviation was observed in TAWGUT (1.477 Å),
397which contains four tris(cyclohexyl)stibine ligands. The large
398size and flexibility of these stibine ligands, combined with the
399relatively large atomic radius of the coordinating antimony
400(Sb) atom, caused the highest D-MAE3.
401Figure 3c presents the distribution of D-MAE3 values for
402each coordination geometry as a box plot, with the same set of
403CSD complexes used in the energy comparison of Figure 2.
404Most coordination geometries exhibited average D-MAE3
405values below 0.5 Å, indicating that MetalloGen- and CSD-
406derived structures differ only slightly due to minor conforma-
407tional variations, which is consistent with the low energy
408differences observed earlier. The overall average D-MAE3
409across all geometries was 0.399 Å, with the smallest deviation
410of 0.173 Å observed for the square planar geometry. While
411most D-MAE values fall within a small range, a few notable
412outliers were found in the trigonal planar, square planar,
413tetrahedral, and trigonal bipyramidal geometries. In particular,
414the square planar geometry had more outliers, ranging from 0.7
415to 1.1 Å. For the remaining geometries, a few outliers with D-
416MAE3 values ranging from 1.0 to 1.6 Å were found,
417comparable to the deviation observed for TAWGUT in Figure
4183b. Manual inspection revealed that these large deviations were
419primarily caused by significant conformational rearrangements
420of ligands directly coordinated to the metal center. Both
421energetic and structural analyses suggest that MetalloGen can
422generate 3D structures that closely resemble their references
423across all geometry types considered in this study.
424Finally, we examined the diversity of ligands in the test set
425 f4by analyzing three key properties: the total number of atoms,
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f4 426 denticity, and hapticity. Figure 4a shows the distribution of
427 these properties. First, the results show a wide range of ligand
428 sizes in the test set. Ligands with fewer than 30 atoms were the
429 most common, but several hundred had more than 30 atoms,
430 and dozens contained between 121 and 150 atoms.
431 Furthermore, the test set contained a diverse set of structurally
432 complex ligands, including multidentate and polyhapto species,
433 which are the very cases that our work aims to address. While
434 most of the ligands were monodentate or nonhapto, the set
435 included over 1000 multidentate ligands and more than 200
436 polyhapto ligands. The most common hapticities among the
437 polyhapto ligands were η2 and η5, corresponding to well-
438 established organometallic motifs. The η2 hapticity typically
439 involves side-on binding of σ bonds, such as in H2 and C−H
440 bonds in σ-complexes, as well as side-on binding of π bonds,
441 such as in alkenes (e.g., ethylene) in π-complexes. The η5

442hapticity is characteristic of conjugated five-membered rings
443such as the cyclopentadienyl ligand. MetalloGen successfully
444generated valid structures for these diverse cases, underscoring
445its ability to handle a wide range of coordination complexes
446with structurally diverse and complex ligands.
447Figure 4b shows examples of the most complex ligands,
448successfully generated by MetalloGen. The three examples
449shown at the top of Figure 4b−MOCQEC, LEXMIL, and
450OHAHIO−contain polyhapto ligands. MOCQEC is a bridged
451sandwich complex where a single ligand features two aromatic
452rings simultaneously coordinating to the metal center.
453LEXMIL is a trigonal planar ansa-metallocene composed of a
454bridged bidentate ligand with two Cp rings and a monodentate
455ligand bound to the metal center through a linear η4

456interaction. OHAHIO is another trigonal planar ansa-metal-
457locene that features a bidentate ligand with two Cp rings linked

Figure 4. Ligand diversity of the CSD structures used in the benchmark. (a) Distribution of ligand properties, including the total number of atoms,
denticity, and hapticity. (b) Representative examples of structures containing multidentate and polyhapto ligands. The top row shows examples
with polyhapto ligands such as Cp rings and π-donating groups, while the bottom row shows structures with multidentate ligands.
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458 by a three-atom bridge, along with a monodentate ligand
459 coordinating through an η2 interaction. The bottom three
460 examples (HOXRIV, YATYAW, and YOSNEC) feature
461 exceptionally high ligand denticity. HOXRIV is an octahedral
462 complex with a tetradentate porphyrin ring in the equatorial
463 position and two axially bound pyridine ligands. YATYAW is a
464 square pyramidal complex with a pentadentate ligand, the
465 highest denticity observed in our test set. YOSNEC is a
466 trigonal bipyramidal complex with a tridentate ligand that
467 includes a single η2-binding site at one of the equatorial
468 positions. These examples highlight the complexity of
469 generating 3D conformers for the CSD test set and
470 demonstrate MetalloGen’s robustness in handling such
471 challenging cases.
472 3.2. The MOR41 Benchmark Set. The MOR41 bench-
473 mark set contains 41 closed-shell organometallic reactions
474 representative of key chemical transformations commonly
475 found in transition metal chemistry and catalysis, including
476 complexation, oxidative addition, and ligand exchange.97

477 Compared to the CSD data set, MOR41 offers a more realistic
478 benchmark for practical applications and allows for the
479 evaluation of MetalloGen’s potential for automated analysis
480 of organometallic reactions. Moreover, these reactions often
481 involve complexes with η interactions and require accurate
482 generation of structures with precise stereochemistry, where
483 existing methods are likely to struggle. Of the 41 reactions,
484 those involving polynuclear complexes were excluded, yielding
485 a final set of 38 reactions comprising 64 mononuclear
486 organometallic compounds. The original benchmark data set
487 was provided at the DLPNO−CCSD(T)/CBS(def2-TZVPP/
488 def2-QZVPP) level of theory, which is prohibitively expensive.
489 To make the study computationally feasible, we reoptimized all
490 reference geometries and evaluated their energies at the PBE0-

491D3(BJ) level of theory.100,101 For these calculations we used
492the def2-SVP basis set and corresponding effective core
493potentials,102 as obtained from the Basis Set Exchange.106

494Then, we prepared the m-SMILES representations for each
495complex (See Figure S6 for examples) and used them as input
496to MetalloGen to regenerate their 3D structures. The resulting
497geometries were also optimized at the PBE0-D3(BJ)/def2-SVP
498level to ensure consistency. All structures were validated via
499vibrational frequency analysis. Geometry optimizations and
500frequency calculations were performed using Gaussian 16.107

501Additional computational details can be found in Section S8.
502 f5Figure 5a presents the energy differences between
503MetalloGen-generated structures and their corresponding
504reference structures. Of the 64 structures analyzed, 56 had
505energy differences of less than 5 kcal/mol, and 51 of these were
506almost identical to the reference. These results manifest the
507forte of MetalloGen in generating accurate 3D structures of
508organometallic complexes frequently observed in practical
509applications. The remaining eight structures with energy
510differences above 5 kcal/mol exhibited conformationally
511flexible ligands, such as tricyclohexylphosphine (PCy3; PR41,
512ED41, ED24, PR24), triisopropylphosphine (P(i-Pr)3; ED07,
513PR07), and 1,3-bis(2,4,6-trimethylphenyl)imidazole (SIMes;
514PR16, PR25). These bulky ligands with large torsional degrees
515of freedom led to energy differences as high as 37.0 kcal/mol
516(Figure 5c, PR24 with two PCy3 ligands).
517To examine whether the observed energy discrepancies can
518be resolved through additional conformational sampling, we
519applied the CREST algorithm to the eight structures.108

520Positional constraints were imposed on the metal center and
521all donor atoms to preserve its stereochemistry. The GFN2-
522xTB method was used for the CREST sampling, and the
523resulting ten lowest-energy conformers were subsequently

Figure 5. Testing MetalloGen on the MOR41 benchmark set, comprising 64 organometallic complexes derived from 38 reactions. (a) Histogram
showing energy differences of MetalloGen-generated structures from their references, which were optimized at the PBE0-D3(BJ)/def2-SVP level.
Blue bars on the right side of the dashed line represent structures with energy differences exceeding 5 kcal/mol, which were further refined using
CREST. (b) The energy differences of the eight structures above 5 kcal/mol without CREST (sky blue) and those after applying CREST (deep
blue). For each coordination complex, the ten lowest-energy conformers identified by CREST were individually reoptimized at the same DFT level.
(c−d) PR24 and PR41 conformers generated by MetalloGen, with and without CREST. Cyclohexyl groups in twist-boat conformations are
highlighted in red; chair conformations are highlighted in blue. In the PR41 conformer generated by MetalloGen and CREST, the carbon−carbon
double bond weakly interacts with the Ru metal center (C−Ru distance of 2.9 Å, highlighted in pink), further stabilizing the conformer.
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524 reoptimized with DFT. Additional details regarding the
525 CREST sampling are provided in Section S9. As shown in
526 Figure 5b, conformers with energies comparable to those of
527 their respective references were obtained for all eight
528 complexes. The most dramatic decrease in energy was
529 observed for PR24, where four of the six cyclohexyl groups
530 (Figure 5c, highlighted in orange) switched from an unstable
531 twist-boat conformation to a more favorable chair conforma-
532 tion (Figure 5c, highlighted in blue). In this new conformer,
533 with all six cyclohexyl rings adopting the chair conformation,
534 the energy is 40.4 kcal/mol lower than that of the previously
535 obtained structure and only 3.4 kcal/mol higher than the
536 reference. Interestingly, for PR41, we identified a new
537 conformer lying 12.3 kcal/mol below its earlier counterpart
538 and 7.9 kcal/mol below the reference structure. This
539 substantial stabilization comes from the favorable conforma-
540 tional switch from twist-boat to chair, along with an additional
541 interaction between the Ru center and a nearby carbon−
542 carbon double bond (Figure 5d). These results demonstrate
543 that combining MetalloGen with a conventional conforma-
544 tional sampling tool like CREST can yield low-energy
545 structures suitable for computational studies of organometallic
546 reactions.
547 Building upon the high reliability of MetalloGen in adjusting
548 the stereochemistry of coordination complexes, we further
549 evaluated whether it can systematically enumerate all feasible
550 stereoisomers of a given complex. As a case study, we selected
551 the PR08 complex from the MOR41 benchmark set, an
552 octahedral Ir(III) complex featuring four different ligand types,
553 including two identical triphenylphosphine and two hydride
554 ligands�providing a suitable test case for stereochemical
555 variation. We enumerated all possible stereoisomeric config-
556 urations arising from ligand permutations across the six
557 coordination sites and used MetalloGen to generate the
558 corresponding 3D structures. Each structure was subjected to
559 the CREST algorithm to identify low-energy conformations,
560 and the lowest-energy conformer for each stereoisomer was
561 subsequently refined using DFT at the PBE0-D3(BJ)/def2-
562 SVP level of theory.

f6 563 Figure 6 shows the eight stereoisomers successfully
564 generated by MetalloGen. The resulting structures displayed
565 a range of relative electronic energies, implying distinct
566 stereoisomeric configurations compared to the original
567 complex. Among them, two enantiomeric pairs (isomers 5−6
568 and 7−8) were identified, each exhibiting nearly identical
569 electronic energies (differences less than 1 kcal/mol),
570 consistent with mirror symmetry. Notably, two stereoisomers
571 (isomers 4 and 7) were found to be more stable than the
572 original configuration. These results demonstrate that Metall-
573 oGen can be effectively used to systematically explore metal-
574 centered stereoisomerism, enabling the identification of more
575 stable or catalytically relevant configurations in coordination
576 complexes.
577 3.3. Application to Mechanistic Studies of Organo-
578 metallic Catalysis. The final test set consists of three catalytic
579 reactions characterized by distinct coordination geometries.
580 The first example is a Rh(III)-catalyzed direct C−H amination
581 involving a pentamethylcyclopentadienyl (Cp*) ligand, studied
582 by Park et al.109 The second is a room-temperature Cu-
583 catalyzed aryl bromide amination, developed by Kim et al.110

584 The third is a hydroaryloxylation of an olefin catalyzed by a
585 pincer iridium complex, reported by Haibach et al.111 These
586 systems were selected to cover a broad range of coordination

587environments: Park et al. includes trigonal planar and
588tetrahedral geometries; Kim et al. features predominantly
589square planar geometries; and Haibach et al. exhibits various
590geometries such as square planar, square pyramidal, and
591octahedral.
592Compared to the previous benchmarks, these catalytic
593reactions impose additional challenges, including high-energy
594intermediates (e.g., the Rh(V) nitrenoid species in Park et al.),
595sterically hindered ligands (e.g., N1, N2-diarylbenzene-1,2-
596diamine ligands of Kim et al.), and stereochemical require-
597ments critical for regioselective outcomes (e.g., Markovnikov-
598type addition in Haibach et al.). As MetalloGen is designed to
599provide reasonable initial guesses for local minima structures,
600we focus on reaction energy calculations (energies of
601intermediates for each elementary step), leaving activation
602energies and transition state characterization for future work.
603To generate the 3D structures of the intermediates, CREST
604was used to sample low-energy conformers. The lowest-energy
605conformer for each structure was then reoptimized using DFT.
606The DFT calculations were performed following the computa-
607tional protocols outlined in the original studies. More details
608can be found in Sections S8 and S9 of the Supporting
609Information.
610 f7Figure 7 shows the reaction energy profiles obtained using
611MetalloGen, alongside the reference energy profile reported in
612the original studies. MetalloGen successfully reproduced the
613energy profiles along all three catalytic cycles, with most
614structures differing by less than 3 kcal/mol and none deviating
615more than 5 kcal/mol from the reference values. Structural

Figure 6. Demonstration of MetalloGen’s ability to systematically
generate all feasible stereoisomers. The PR08 complex (from the
MOR41 benchmark set) is an octahedral Ir(III) complex featuring
four distinct ligand types: two triphenylphosphine ligands, two
hydrides, one chloride, and one carbonyl. All eight theoretically
possible stereoisomers were successfully generated. Each structure was
optimized at the PBE0-D3(BJ)/def2-SVP level of theory, and relative
electronic energies (in kcal/mol) are reported with respect to the
original configuration (isomer 1).
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616 analysis reveals that these energy differences are mainly due to

617 conformational variations. In particular, for the pincer-Ir

618 system, MetalloGen identified an intermediate conformer

619 that is significantly more stable than the one reported in the

620 reference. This intermediate arises from a 1,2-addition of the

621 Ir−O bond to the double bond of the η2-coordinated propene,

622 forming a four-membered ring with new Ir−C and C−O bonds

623 (Figure 7c, the fifth intermediate). The new conformer is 6.2

624 kcal/mol more stable than the corresponding reference

625 structure. These results demonstrate MetalloGen’s ability to

626 reliably reproduce, and even in some cases, improve the
627 reference structures.

4. CONCLUSIONS AND OUTLOOK

628Generating the 3D conformers of coordination complexes is a
629crucial step in computational workflows for studying metal
630coordination complexes. While existing methods have made
631substantial progress, they remain limited in handling
632complexes with side-on bound and polyhapto ligands, which
633are commonly encountered in organometallic chemistry. To
634address these gaps, we developed MetalloGen, a new
635conformer generation method that supports a wide range of
636coordination geometries, ligand types, and stereochemical
637configurations. MetalloGen was evaluated on a curated subset
638of CSD structures encompassing eight commonly observed
639coordination geometries. The results show that MetalloGen
640reliably generates chemically valid conformers across a wide

Figure 7. Energy profiles of the three catalytic reactions obtained with MetalloGen combined with CREST. The reference energies are shown in
blue, and the energies from MetalloGen-generated structures are shown in black. All energies are given relative to the first reference structure in
each cycle. (a) The reaction energy profile of the C−H amination of 2-phenylpyridine with methanesulfonyl azide and a Cp*Rh(III) catalyst by
Park et al.109 (b) The reaction energy profile of the C−N coupling of 4-bromoanisole and morpholine, catalyzed by a diamine-Cu complex, by Kim
et al.110 (c) The reaction energy profile of the propene hydroaryloxylation catalyzed by a pincer-Ir complex, by Haibach et al.111.
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641 range of ligands, varying in both denticity and hapticity, under
642 diverse coordination environments. Building on this robust-
643 ness, we applied MetalloGen to the MOR41 benchmark set
644 and three catalytic reactions, successfully reproducing the
645 structures of all mononuclear species involved in these
646 reactions. This enabled a fully automated workflow to calculate
647 reaction energy profiles across a diverse set of organometallic
648 reactions. When coupled with CREST, MetalloGen can yield
649 structures with electronic energies comparable to or lower than
650 those of the reference structures. In addition, MetalloGen
651 supports a SMILES-like input format, termed m-SMILES,
652 which enables users to represent diverse coordination
653 complexes and directly generate their 3D structures. Overall,
654 MetalloGen offers an efficient and automated solution for
655 generating 3D structures of coordination complexes with
656 minimal manual intervention, particularly those relevant to
657 organometallic catalysis.
658 Despite these advancements, several limitations remain.
659 First, MetalloGen currently supports only mononuclear
660 complexes. As a result, three out of 41 reactions in the
661 MOR41 benchmark set involving binuclear species were
662 excluded from this study. Extending MetalloGen to support
663 polynuclear systems would expand its applicability to a broader
664 range of coordination environments, including those com-
665 monly found in multinuclear metalloenzymes, catalysts, and
666 other functional materials.112−114 Second, MetalloGen shows a
667 higher failure rate for complexes with high coordination
668 numbers (typically seven or more). This limits its applicability
669 to lanthanide and actinide complexes, where alternative tools
670 such as Architector may be more appropriate, although these
671 tools still face limitations when dealing with side-on or
672 polyhapto ligands. Lastly, MetalloGen does not guarantee
673 generation of the lowest-energy conformers. As shown earlier,
674 some generated structures displayed higher energies due to the
675 absence of stabilizing features such as hydrogen bonding or
676 favorable ring conformations. While subsequent conforma-
677 tional refinement using tools like CREST can alleviate these
678 issues, such procedures entail significant computational cost.
679 The last two limitations primarily arise from the RDKit-
680 based embedding step. This step often fails for complexes with
681 high coordination numbers, thereby interrupting the subse-
682 quent steps in MetalloGen. Moreover, the embedding
683 algorithm lacks chemical awareness of subtle stabilizing
684 interactions, which can lead to the generation of higher-energy
685 conformers. Future work could advance in several directions.
686 One is the development of metal-aware distance geometry
687 embedding algorithms to improve the success rate of
688 conformer generation for complexes with high coordination
689 numbers. Another promising direction is the integration of
690 machine learning approaches, particularly diffusion-based
691 generative models, as a means to directly generate low-energy
692 conformers without relying on exhaustive sampling. Such
693 capabilities have already been demonstrated in prior studies on
694 organic molecular systems.5−12 With sufficient data augmenta-
695 tion using MetalloGen, these strategies could be extended to
696 coordination complexes. Nevertheless, the current version of
697 MetalloGen provides a practical and effective solution that
698 complements existing tools for high-throughput screening and
699 automated mechanistic studies in coordination chemistry,
700 serving as a solid foundation for future computational
701 workflows.
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